시멘틱 기법은 데이터 종류에 따라, 2차원 이미지, 3차원 포인트 클라우드로 구분할 수 있다.
포인트 클라우드 시멘틱 세그먼테이션의 최신 기법은 다음과 같다.
- RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020)
 - RangeNet++ and SUMA
 - KPConv: Flexible and Deformable Convolution for Point Clouds (2019)
 - PointCNN: Convolution On X-Transformed Points (2019)
 - Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
 - Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
 - Awesome point cloud analysis
 - Associatively Segmenting Instances and Semantics in Point Clouds
 - TANet
 - Complex-YOLO
 - Geometry Sharing Network for 3D Point Cloud Classification and Segmentation. AAAI 2020
 - Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data
 - PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation
 - Semantic Segmentation Editor
 - PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
 - Dynamic Graph Convolutional Neural Network
 - PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
 
이미지 기반 시멘틱 세그먼테이션의 최신 기법은 다음과 같다.
- MIT Deep Learning
 - Deep Learning for Tracking and Detection
 - SLAM Implementation: Bundle Adjustment with g2o
 - 2019 Guide to Semantic Segmentation
 - 2D 3D semantic segmentation
 - MIT Driving Scene Segmentation
 - FCN (Berkeley version)
 - Keras FCN
 - DeepLab (CoLab)
 - DeepLab for video
 
Semantic segmentation mAP, FPS
레퍼런스


댓글 없음:
댓글 쓰기